

**Proposal current emission limits 2-150 kHz** Challenges, developments, findings

### Nice to meet you!

#### Tim Slangen

PhD Candidate @ TU/e PQ researcher @ ElaadNL MSc in Electrical Engineering (2019) t.m.h.slangen@tue.nl



![](_page_1_Picture_4.jpeg)

### Overview

- Supraharmonics
- Measurement challenges
- Developments / findings 2-150 kHz
  - Findings on network impedance
  - Improved impedance calculation method
  - New voltage compatibility standard
- Derivation / proposal current emission limits 2-150 kHz

![](_page_2_Picture_8.jpeg)

### **Supraharmonics**

#### 2-150 kHz conducted distortions

![](_page_3_Picture_2.jpeg)

Sources:

Electric vehicles, PV inverters, LED lamps, Variable frequency drives, small converters

![](_page_3_Picture_5.jpeg)

#### **Caused interference:**

Reduced lifetime of capacitors, tripping/blinding of RCDs, flickering of LED lamps, audible noise, misoperation or failure of equipment, failure of cable terminations

![](_page_3_Figure_8.jpeg)

![](_page_3_Picture_9.jpeg)

#### **Prevent by:**

Use of EMC filters, setting limits, measuring and understanding

Image source: The Propagation and Interaction of Supraharmonics from Electric Vehicle Chargers in a Low-Voltage Grid (Slangen et al., 2020)

![](_page_3_Picture_13.jpeg)

### **Supraharmonics**

#### What do we need to know?

- Emission of a device (EV/FCS)
- Summation of components
- The propagation of distortions
- The effect on the voltage
- The effects on other equipment  $\rightarrow$  All?
- Interaction
- $\rightarrow I_{SH}$   $\rightarrow Z_{SH}, I_{SH}$   $\rightarrow Z_{SH}, I_{SH}$   $\rightarrow U_{SH}$

 $\rightarrow$  All?

 $\mathbf{Z}_{\mathrm{SH}=}$   $\mathbf{U}_{\mathrm{SH}}$  /  $\mathbf{I}_{\mathrm{SH}}$ 

![](_page_4_Picture_10.jpeg)

### **Measurement challenges 2-150 kHz**

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

### **Measurement challenges 2-150 kHz**

- Voltage *and* current!
- Lab vs. Field
- Bandwidth
- Resolution
- Method?

![](_page_6_Picture_6.jpeg)

### **Emission measurement outcomes**

#### $\rightarrow$ In session 3 at 13h30

| Session 3 |                        |                                          |  |
|-----------|------------------------|------------------------------------------|--|
| 13.30     | Tim Slangen, TU/e      | SH-emission DC-chargers and interaction  |  |
| 14.00     | Thomas Gerrits, Heliox | Multi-MW charging systems                |  |
| 14.30     | Ernst Wierenga, Stedin | Implementation in grid calculation tools |  |
| 15.00     | drinks                 |                                          |  |

![](_page_7_Picture_3.jpeg)

## **Developments / findings 2-150 kHz**

#### Network impedance for 9 to 150 kHz

- CISPR-16-1-2 reference impedance
- IEC 60725 short-circuit impedance (Ssc)
- Method by Stiegler / TU Dresden combines these two; Scaled CISPR impedance
- Verified by measurements **Erhan / TU Eindhoven** and Stiegler / TU Dresden

![](_page_8_Picture_6.jpeg)

Based on:

 Erhan, V., Slangen, T., Cuk, V., Cobben, J. F. G., & van Wijk, T. (2022). Measurement and Analysis of the Low Voltage Network Impedance in the Supraharmonic Range. In 2022 20th International Conference on Harmonics & Quality of Power (ICHQP): Proceedings "Power Quality in the Energy Transition" https://doi.org/10.1109/ICHQP53011.2022.9808479

![](_page_9_Picture_3.jpeg)

![](_page_10_Figure_1.jpeg)

Elaadni TU/e

V. Erhan (2022, TU Eindhoven)

![](_page_11_Figure_2.jpeg)

#### V. Erhan (2022, TU Eindhoven)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_13_Figure_1.jpeg)

EV charging plaza

**PoC/Houses** 

![](_page_13_Picture_4.jpeg)

#### Impedance $[\Omega]$ Phase [°] -50 With load Without load -100Frequency [kHz]

#### House 2: with and without loads

![](_page_14_Picture_3.jpeg)

#### CISPR and Scaled-CISPR (Stiegler method) for different Ssc values from practice

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

CISPR and Scaled-CISPR (Stiegler method) for different Ssc values from practice

- 99<sup>th</sup> percentile of Stiegler measurements gives a maximum of 25 MVA: lowest impedance
- CISPR overestimates the network impedance by **up to a factor 5**: highest impedance
- The **DUT might emit more current distortion** when the network impedance is lower
- Hence, testing with **CISPR** spec LISN/AMN is not a representative network impedance
- Recommendation: test also with lower network impedances than CISPR
- Ideally: test with different network impedances representing different Ssc values

![](_page_16_Picture_8.jpeg)

# **Recent developments / findings 2-150 kHz**

#### Network impedance for 9 to 150 kHz

- CISPR-16-1-2 reference impedance
- IEC 60725 short-circuit impedance (Ssc)
- Method by Stiegler / TU Dresden combines these two; Scaled CISPR impedance
- Verified by measurements **Erhan / TU Eindhoven** and Stiegler / TU Dresden

#### Voltage compatibility levels defined in IEC 61000-2-2

- Amendment 1 and 2: 40<sup>th</sup> harmonic up to 30 kHz
- New amendment A2:2019: 30 to 150 kHz!

![](_page_17_Picture_9.jpeg)

# **Compatibility?**

![](_page_18_Figure_1.jpeg)

NEN-EN-IEC 61000 series

![](_page_18_Picture_3.jpeg)

# Voltage compatibility 2-150 kHz

#### Separate definitions for 2-9, 9-30, 30-50 and 50-150 kHz

![](_page_19_Figure_2.jpeg)

$$V[V] = 10^{(V[dB\mu V] - 120)/20}$$

| dBuV  | V    |
|-------|------|
| 129.5 | 3.0  |
| 120   | 1.0  |
| 100   | 0.1  |
| 85    | 0.02 |

![](_page_19_Picture_5.jpeg)

### Derivation / proposal current emission limits 2-150 kHz

- Based on the new voltage compatibility standard and the recent findings on network impedance, a possible range for future emission limits is derived
- These values are also in line with recommendations from the Elaad Testlab
- For the values below the derived emission range, no interferences are known, but this is not a guarantee
- Recommendation: use the derived emission limits, as future standards might come with similar values
- However, no rights can be derived from the proposed / derived emission limit values.

![](_page_20_Picture_6.jpeg)

### **Derived emission limit range**

#### Band based on CISPR and scaled-CISPR, up to Ssc = 25 MVA

![](_page_21_Figure_2.jpeg)

![](_page_21_Picture_3.jpeg)

# Elaadni

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

#### Tim Slangen

Doctoral candidate Department of Electrical Energy Systems t.m.h.slangen@tue.nl

Further readings: <u>https://research.tue.nl/nl/persons/tim-mh-slangen/publications/</u>