

RFP Residential Flexibility 1 / 42

Version 30-7-2025: Updated specifications for EEBUS

Request For Proposal (RFP):
Residential Flexibility, Interoperability HEMS and

Flexible Energy-Intensive Devices
ElaadNL and the Flexiblepower Alliance Network (FAN) invite suppliers to participate in a
co-funded project to develop and test open-source software connectors that enable
Home Energy Management Systems (HEMS) to communicate with flexible energy-
intensive devices using standardized protocols. This RFP covers five work packages,
each targeting a key protocol or integration layer:

WP Protocol / Focus Deliverable
1 S2 / PEBC HEMS + device + optional cloud receiver
2 Matter 1.4 HEMS + Matter-compliant device
3 EEBUS (SHIP/SPINE) HEMS + EEBUS-compatible device
4 Modbus converter Secure HW+SW bridge (e.g. S2 → Modbus)
5 OCPP 2.1 proxy Virtual proxy for HEMS ↔ CSMS/charger

All code will be published under the Apache 2.0 license and maintained in the official
ElaadNL GitHub repository, with CI pipelines, documentation templates, and
SonarQube-based quality monitoring in place.

Why Participate?
• Receive funding for development work with clear deliverables
• Lead the market with future-ready solutions
• Accelerate deployment with access to reference implementations and test facilities
• Matchmaking support for consortia (e.g. device + software partner)

Focus Use Cases
• Grid-capacity limiting based on DSO capacity profiles (OpenADR)
• Dynamic tariff optimization to shift or store load
• Self-consumption maximization using local PV and flexible loads

Who Can Apply?
• For WP 1–3, proposals must cover the full chain: HEMS, device, and software
• For WP 4, proposers may focus on converter development (hardware + software)
• For WP 5, HEMS-side development only is permitted (ElaadNL supplies the charger)
• Software firms must apply as part of a consortium

Submission & Contact
Submit your proposal by e-mail to Marisca Zweistra at rfp@elaad.nl no later than Friday,
19 September 2025, 17:00 CET.

mailto:rfp@elaad.nl

RFP Residential Flexibility 2 / 42

Definitions and Acronyms
Aggregator A market party translating signals from the market or grid into commands for

households. (This document applies a broader definition than the market
role definition of aggregator.)

BRP Balance Responsible Party
DSO Distribution System Operator
EEBUS A use-case-driven interoperability protocol allowing household devices and

energy systems to communicate through a standardized semantic data
layer.

EV Electrical Vehicle
FEID Flexible energy-intensive device
HEMS Home Energy Management System
Matter An open-source, IP-based connectivity standard for smart home and IoT

devices, enabling secure, reliable, and interoperable communication across
ecosystems.

MODBUS RTU A serial communication protocol widely used for monitoring and controlling
energy devices in buildings.

MODBUS TCP A variant of the MODBUS protocol using TCP/IP networks for
communication.

OCPP Open Charge Point Protocol; an open standard for communication between
charging stations and backend systems.

OpenADR Open Automated Demand Response, a client-server-based demand
response protocol allowing energy suppliers and grid operators to remotely
manage flexibility through standardized messaging.

PEBC Post-Equivalent Base Case is a control signal used to coordinate device
behavior based on standardized grid capacity profiles, typically
implemented in devices or cloud-based systems as a PEBC receiver.

Partner Selected Proposers that partake in the project
Project The development and testing of work packages in this RFP.
Proposer Party or parties that submit a proposal for this RFP.
RFI Request For Information
RFP Request For Proposal
S2 A flexibility protocol focusing on energy management across multiple

devices, abstracting the communication between devices and the HEMS,
enabling devices to collaborate independently of their communication
language. More information at S2standard.org

SHIP Smart Home Interoperability Protocol is a communication protocol that
enables standardized data exchange and control between energy devices
and a HEMS.

SPINE Smart Premises Interoperable Neutral-message Exchange is a semantic
data model and message framework used by SHIP and EEBUS to ensure
consistent, interoperable communication between devices and systems in
the energy domain.

TSO Transmission System Operator

RFP Residential Flexibility 3 / 42

Contents
1. Introduction ... 5

2. Scope of Work .. 6

2.1 Objectives ... 6

2.2 Key Use-Cases ... 6

2.3 Project Scope and Boundaries ... 7

2.4 Work Packages ... 7

3. Technical Specifications for the Deliverables ... 9

3.1 WP1 – S2 Protocol .. 9

3.2 WP2 – Matter Protocol .. 11

3.3 WP3 – EEBUS Protocol ... 15

3.4 WP4 – Local Modbus Converter .. 17

3.5 WP5 – OCPP Integration .. 17

4. Development Guidelines .. 19

4.1 Non-functional Requirements ... 19

4.2 Open-Source ... 21

4.3 Documentation Templates & Repository ... 21

5. Project Approach & Milestones... 22

5.1 Way of Working and Collaboration ... 22

5.2 ElaadNL’s Role and Responsibilities ... 22

5.3 Delivery Plan .. 23

5.4 Acceptance Criteria & Final Demonstration .. 23

6. Participation & Eligibility .. 24

6.1 Eligible Parties and Roles .. 24

6.2 Responsibilities of Selected Partners ... 25

7. Planning ... 26

8. Proposal Questionnaire ... 27

9. Evaluation & Selection ... 28

RFP Residential Flexibility 4 / 42

10. Commercial & Legal Terms ... 29

10.1 General .. 29

10.2 Pricing & Payment ... 29

10.3 Intellectual Property & Licensing .. 30

10.4 Public Availability & Handover ... 30

10.5 Limitation of Liability ... 30

10.6 Funding Contingency & Withdrawal of RFP.. 30

Appendices ... 31

A. Project Background and Goals ... 31

A.1 Context and Motivations ... 31

A.2 Urgency ... 32

A.3 General Architecture .. 32

A.4 Key Use Cases ... 33

B. Open-Source and Interoperability Testing... 35

B.1 Development of Open-Source Software ... 35

B.2 Testing and Demonstrating Interoperability ... 35

C. Implementation Scenarios .. 37

C.1 Local HEMS ... 38

C.2 Cloud-based HEMS .. 39

D. Technical Considerations .. 40

D.1 Modbus ... 40

D.2 OCPP .. 41

E. Technical Information .. 42

E.1 Cross-Protocol Terminology Glossary... 42

RFP Residential Flexibility 5 / 42

1. Introduction

The energy transition in the Netherlands is driving rapid growth in EVs, heat pumps, home
batteries, and solar panels. These devices offer major potential for residential flexibility
by shifting energy use to times of high renewable supply and reducing grid congestion.

Unlocking this potential requires interoperable Home Energy Management Systems
(HEMS) that coordinate and optimize device operation. HEMS enable both automated
responses to external signals (e.g. price or grid capacity) and smart scheduling based on
household preferences. More background information on our research and previous
Request for Information can be found in Appendix A.

This Request for Proposal (RFP), initiated by ElaadNL and Flexiblepower Alliance Network
(FAN) under the Dutch National Grid Congestion Action Program, invites proposals for
developing and testing interoperable HEMS components and flexible energy intensive
devices. As part of our roadmap toward interoperability, this RFP focuses on the initial
development of open-source software, with ElaadNL taking the lead and bearing overall
responsibility for coordination and delivery.

Why participate?

• Receive funding for development work with clear deliverables
• Lead the market with future-ready solutions
• Accelerate deployment with access to reference implementations and test

facilities

By contributing, companies help build a shared foundation for residential flexibility and
benefiting both consumers and the grid.

RFP Residential Flexibility 6 / 42

2. Scope of Work

2.1 Objectives

The objective of this RFP is to develop open-source, standardized software
connectors that enable seamless communication between HEMS and selected FEIDs.

These connectors must:

• Enable interoperability by supporting consistent communication across
different devices and vendors by implementing selected protocols (S2, EEBUS
and Matter).

• Support local and cloud integration to function both in local HEMS
deployments and cloud-based HEMS, including hybrid solutions with cloud-
device relays.

• Ensure secure and reliable communication by implementing security features
as defined by each protocol, ensuring authentication, encryption, and session
integrity across all components. More details are provided in Section 4.1.1.

• Support selected use cases that can be found in Section 2.2. Any logic and
additional interfaces required to support these use cases are expected to be part
of the HEMS solution and are not included in the development scope of this RFP.

• Adopt a modular, documented, and testable architecture that allows multiple
development teams (consortia) to contribute effectively and ensure long-term
maintainability. More details are provided in Section 4.1.6.

2.2 Key Use-Cases

This project focuses on three core use cases that demonstrate the value of
interoperability between HEMS and connected devices:

1. Limiting Peak Grid Demand: The DSO forecasts grid load and sends capacity
profiles to the HEMS, which then limits import/export using local flexibility. This
helps prevent congestion during high-demand periods, especially in winter.

2. Dynamic Tariff Optimization: The HEMS responds to fluctuating electricity prices
by shifting consumption to lower cost periods and storing energy (e.g. in a battery
or hot water buffer). This reduces household energy costs and grid pressure during
peak pricing periods.

3. Optimizing Self-Consumption: The HEMS maximizes the use of self-generated
solar energy by intelligently distributing surplus power to batteries and/or EVs.
This increases energy independence and reduces grid feed-in during local solar
generation peaks.

More detailed descriptions of each use case are provided in Appendix A.4.

RFP Residential Flexibility 7 / 42

2.3 Project Scope and Boundaries
• HEMS Integration Phase: HEMS manufacturers are expected to develop one or

more protocol connectors as part of this RFP. However, in the subsequent
Integration Phase (outside the scope of this RFP), they will be required to support
all selected protocols, either by building their own or integrating existing open-
source connectors developed through this project.

• Interoperability Test Phase: The goal of this project is to stimulate market
adoption of interoperable, plug-and-play solutions. Participating parties commit
to participate in the Interoperability Test Phase where they will test and
demonstrate their connectors on real devices and HEMS platforms at the ElaadNL
Test Lab. An invitation to this phase will follow in late 2025 or early 2026. Parties
not involved in open-source development are also welcome to participate in the
next phase.

• Protocols and Architecture: This project builds on existing architectures,
protocols, and messaging standards. It explicitly does not aim to create new
frameworks, but rather to implement selected protocols effectively and with
interoperability in mind.

• Hardware: Development of hardware or basic device-side flexibility functions is
out of scope. The focus is purely on software integration via connectors, except
for WP4 (see Section 2.4 and 6).

• Use Case Logic: The internal logic of HEMS platforms, including how they
optimize or prioritize different use cases, is considered proprietary and is not in
scope of this RFP. The described use cases serve only to guide the implementation
of interfaces, messages, and integration testing to demonstrate interoperability.

2.4 Work Packages

This RFP project consists of five work packages, each of which Proposers can apply for.
Proposers are expected to develop and deliver end-to-end solutions for the full scope of
the selected work package.

• Work Packages 1, 2, and 3 cover the implementation of the protocols S2, Matter,
and EEBUS, respectively.

• Work Package 4 involves the development of a converter that translates
messages from S2, Matter, or EEBUS into Modbus RTU and Modbus TCP. Given the
security requirements, the expected outcome is a combined hardware and
software solution.

• Work Package 5 focuses on the development of an OCPP proxy, enabling two
systems, CPO backend and HEMS, to send and manage charging profiles. This is
expected to be a virtual (non-hardware) solution.

RFP Residential Flexibility 8 / 42

Every work package consists of:

• Developing open-source software
• Implementing the connector in physical/cloud HEMS and/or physical FEID.
• Demonstrating successful communication between HEMS and device, where the

HEMS sends a control action and the device executes it as intended.

 HEMS HEMS Cloud (optional) Device

WP1 S2 1A: PEBC control
implementation

1C: PEBC receiver
(optional)

1B: PEBC control
implementation

WP2 Matter 2A: Matter HEMS
2C: Matter-Compatible
Cloud Gateway (optional) 2B: Matter Device

WP3 EEBUS 3A: SHIP and SPINE 3B: SHIP and SPINE

WP4 Modbus 4A: Local Converter
Modbus

WP5 OCPP
5A: OCPP "Light"
Connector 5B: OCPP Controller

Detailed information on the work packages and deliverables can be found in Section 3.

RFP Residential Flexibility 9 / 42

3. Technical Specifications for the Deliverables
This chapter outlines the specific deliverables for each work package (WP) as defined in
Section 2.4. Each WP is split into subcomponents (HEMS, Device, and where applicable
HEMS Cloud). The descriptions include clear acceptance criteria that will serve as the
basis for evaluation and delivery.

Above conceptual representation of IT architecture was created to clarify the different
possible information flows between HEMS and FEID(s). A prerequisite for this
architecture was to be technology agnostic and support local, cloud and hybrid
information flows. In this figure all possible information flows are represented. Only the
green coloured shapes are in scope of this RFP.

3.1 WP1 – S2 Protocol

3.1.1 WP1A – PEBC Control Implementation (HEMS-side)

Description Develops the S2 connector on the HEMS side, implementing the
PEBC control type from EN 50491-12-2. Since the S2 standard is
not prescribing a transport method we choose JSON over web
sockets based on s2-ws-json

Technical
Requirements

1. Programming languages: Python, Java, Go, C/C++, Rust
(others require review)

2. Support for message security and conformance to standard

https://github.com/flexiblepower/s2-ws-json

RFP Residential Flexibility 10 / 42

Acceptance
Criteria

1. Can send the following S2 messages:
a. SelectControlType
b. PEBC.Instruction (PowerEnvelope)

2. Can receive the following S2 messages:
a. ResourceManagerDetails

b. InstructionStatusUpdate
c. PEBC.PowerConstraints
d. PEBC.EnergyConstraints
e. RevokeObject

f. PowerMeasurement
g. PowerForecast

3. Implements message encoding/decoding and lifecycle
handling (Handshake(Response), SessionRequest, and
ReceptionStatus messages)

4. Supports both local (direct) and remote (1C) control
5. Includes test tools and sample configuration

Documentation &
Testing

1. Functional overview and integration instructions
2. Sample configurations and usage examples
3. Gherkin-style tests or equivalent CI pipelines

3.1.2 WP1B – PEBC Control Implementation (Device-side)

Description Implements the receiving side of the PEBC protocol for devices
such as EVSE, BESS, or Heatpump units.

Technical
Requirements

1. Programming languages: C/C++, Rust
2. Embedded compatibility, low resource footprint. We target

embedded devices capable of running embedded Linux
Acceptance
Criteria

1. Can receive and respond to the following messages:
a. SelectControlType
b. PEBC.Instruction

2. Can send the following messages:
a. ResourceManagerDetails
b. PEBC.PowerConstraint
c. PEBC.EnergyConstraints
d. RevokeObject
e. InstructionStatusUpdate
f. PowerMeasurement
g. PowerForecast

3. Translates control messages into local actions
4. Responds with status and telemetry Supports both local

(direct) and remote (1C) control
5. Includes test tools and sample configuration

Documentation &
Testing

1. Local build instructions for embedded targets
2. Logging and telemetry format description

RFP Residential Flexibility 11 / 42

3.1.3 WP1C – PEBC Receiver (HEMS Cloud) (Optional)

Description Implements cloud-side receiver for PEBC messages, preserving
the semantics and behaviors of the protocol.

Technical
Requirements

1. Cloud-compatible language stack (Python, Java, Node.js,
Go, .NET)

2. Scalable architecture with documented API
Acceptance
Criteria

1. Fully compatible with HEMS-side implementation
2. Can receive and forward messages to local or OEM-

managed devices
3. Maintains PEBC state tracking and integrity

Documentation &
Testing

1. API reference and usage examples
2. Security and authentication mechanisms

3.2 WP2 – Matter Protocol
This work package focuses on leveraging the Matter 1.4.1 protocol to enable
interoperability and flexibility control for Electric Vehicle Supply Equipment (EVSE), while
laying the groundwork for broader support of other Flexible Energy-Intensive Devices
(FEIDs), including Heat Pumps, Home Batteries, and Solar Panels.

Although the Matter 1.4.1 specification introduces foundational support for EVSE, it does
not yet provide complete functionality for all required flexibility use cases, particularly for
FEID types beyond EVSE. Therefore, this work package will also address the current
limitations of the standard and define a roadmap for necessary extensions or
adaptations.

The goal is twofold:

• To deliver a fully functional, Matter-based software foundation for EVSE
interoperability based on existing clusters and device types; and

• To define and document the message structures, clusters, and interactions
required within Matter to enable the three residential energy flexibility use cases

Respondents are expected to independently analyze the Matter 1.4.1 specification and
assess its capabilities and limitations. Based on this assessment, they must develop a
concrete message set that enables the use cases described above, either by using
existing standard elements or by identifying and clearly documenting the necessary
extensions. This includes specifying which attributes, commands, and events are to be
implemented, monitored, or invoked by both HEMS and device-side nodes, in
accordance with the Matter data and interaction models.

RFP Residential Flexibility 12 / 42

3.2.1 WP2A – Matter Implementation (HEMS-side)

Description This work package focuses on developing a Matter controller
implementation on the HEMS side that can interact with devices
supporting the Energy EVSE Cluster (0x0099). The
implementation shall conform to the Matter 1.4.1 specification
and prepare for future support of Heat Pumps, Home Batteries,
and Solar Panels.

Technical
Requirements

1. Programming languages: Python, Java, Go, C/C++, Rust
(others require review).

2. Adherence to Matter’s secure communication model using
AEAD (AES-CCM).

3. Compliance with the Matter data model and interaction
model (Read/Write/Invoke/Subscribe).

4. Support for operational certificates (NOC) and discovery via
DNS-SD.

Acceptance
Criteria

1. Demonstrated commissioning of a Matter-compliant EVSE
device.

2. Ability to issue control commands (SetTargets,
EnableCharging, DisableCharging, EnableDischarging) and
subscribe to telemetry (State, SupplyState,
NextChargeRequiredEnergy, NextChargeTargetSoC,
SessionEnergyCharged, SessionEnergyDischarged).

3. Clear demonstration of Matter Interaction Model
functionality.

4. End-to-end integration with the device-side
implementation via a shared Fabric.

5. Explicit mapping of Matter messages (attributes,
commands, events) required to support the three use
cases.

Documentation &
Testing

1. Functional overview and API integration instructions.
2. Example commissioning, control, and telemetry workflows.
3. Usage instructions for integration with future FEID types

including the required messages and required changes
within the Matter specification

3.2.2 WP2B – Matter Implementation (Device-side)

Description This task involves implementing a Matter node that conforms to
the Energy EVSE Cluster (0x0099) as defined in Matter 1.4.1. The
node will simulate or control an EVSE and expose key
functionality such as charge control, telemetry, and state
reporting. It must also implement optional clusters for electrical
energy measurement (0x0091), electrical power measurement
(0x0090), and device energy management (0x0098) to support
extended flexibility use cases.

RFP Residential Flexibility 13 / 42

Technical
Requirements

1. Programming languages: C/C++ or Rust.
2. Designed for embedded environments with low memory

footprint.
3. Support for secure commissioning, certificate-based

authentication (DAC, NOC), and conformance with TLV
encoding.

4. Conformance to Matter's data model and message
reliability mechanisms (MRP).

Acceptance
Criteria

1. Successful commissioning with a Matter controller using
PASE or CASE.

2. Implementation of the Energy EVSE Cluster and selected
optional clusters. Correct interpretation of control
commands: SetTargets, EnableCharging, DisableCharging,
EnableDischarging.

3. Accurate reporting of attributes: State, SupplyState,
NextChargeRequiredEnergy, NextChargeTargetSoC,
SessionEnergyCharged, SessionEnergyDischarged.

4. End-to-end communication with the HEMS-side
implementation.

Documentation &
Testing

1. Device-side functional overview and test instructions.
2. Sample configuration files and code snippets.
3. Logs from simulated charging sessions and telemetry

updates.

3.2.1 WP2C – Matter-Compatible Cloud Gateway (Optional)

Description Develop a Matter-compatible gateway service that enables
cloud-based monitoring and control of Electric Vehicle Supply
Equipment (EVSE) devices connected to a local Matter fabric.
Matter is not a cloud-native protocol and does not support direct
device-to-cloud communication. Therefore, this work package
focuses on building a secure, standards-compliant local
gateway that acts as a Matter controller or commissioner, while
exposing a cloud API for remote interaction.

This gateway will serve as a reference architecture for bridging
cloud services with Matter devices. The implementation must be
explicitly designed for EVSE devices using the Matter-defined
Energy EVSE Cluster (0x0099), but must also be architected with
extensibility in mind, such that future support for other FEIDs
(e.g. Home Batteries, Heat Pumps, Solar Panels) can be added
with minimal effort.

Technical
Requirements

1. Implements the Matter controller or commissioner role,
conforming to Matter 1.4.1.

2. Maintains secure local sessions with Matter nodes via PASE
or CASE.

RFP Residential Flexibility 14 / 42

3. Language stack: Python, Java, Node.js, Go, or .NET.
4. Provides a RESTful or event-driven (e.g. MQTT/WebSocket)

cloud API.
5. Maps cloud-side commands to Matter operations: Read,

Write, Invoke, Subscribe.
6. Cloud communication must respect Matter's trust and

fabric boundaries.
7. Must handle telemetry routing, command translation, and

event propagation.
8. Designed to support modular extensions for additional FEID

device types and clusters.
Acceptance
Criteria

1. Establishes a secure Matter fabric and commissions at
least one EVSE node (Device Type 0x0099).

2. For EVSEs, demonstrates full support for:
o Commands: SetTargets, EnableCharging,

DisableCharging, EnableDischarging
o Attributes: State, SupplyState,

NextChargeRequiredEnergy,
NextChargeTargetSoC, SessionEnergyCharged,
SessionEnergyDischarged

3. Provides a secure API/protocol (e.g. S2 if possible,
otherwise HTTPS or MQTT) that allows external clients to
send control commands and receive telemetry.

4. Ensures end-to-end security and reliability from the cloud
interface to the Matter device.

5. Gateway architecture and implementation must be
documented as extensible, with guidance for integrating
additional device types and clusters.

6. Explicit mapping of Matter messages (attributes,
commands, events) to cloud API endpoints and request
formats, supporting the following three use cases:

Documentation &
Testing

1. Gateway architecture, security model, and component
interfaces.

2. API reference and usage examples.
3. Test logs demonstrating cloud-to-local control and

telemetry.
4. Example extension scenario for a second FEID (e.g. Battery

or Heat Pump).
5. Integration guidance for future cluster/device types using

the same gateway pattern.

RFP Residential Flexibility 15 / 42

3.3 WP3 – EEBUS Protocol
This work package focuses on the implementation and validation of interoperable
communication using the EEBUS protocol stack, specifically targeting the SPINE
semantic layer and the SHIP secure transport protocol. The implementation must adhere
to EEBUS Use Case specifications and follow the defined actor structures, scenario
flows, and state machine logic to ensure interoperability across multiple vendors and
device types.

Each WP below defines a targeted use case. The proposer must implement the
mandatory scenarios, actors, and functions specified in the relevant EEBUS Use Case
Technical Specifications. To facilitate this, filenames of the corresponding EEBUS
documents are included.

3.3.1 WP3A – SHIP and SPINE Implementation (HEMS-side)

Description Open-source implementation of SHIP and SPINE on the HEMS
side, acting as Energy Guard or EMS. The implementation must
support sending limits to multiple flexible devices.

Technical
Requirements

1. Languages: Python, Java, Go, C/C++, Rust
2. Implement EEBUS actor role: Energy Guard / EMS
3. Support all mandatory scenarios from the following Use

Cases:
o LPC – Limitation of Power Consumption
o LPP – Limitation of Power Production

4. Generate and send:
o Active power limits (LPC/LPP)

5. Implement Use Case-specific SPINE flows, message
structures, actor bindings, and state machines.

Reference Files The EEBUS website offers all required use case documents.
They only require you to log in and go to the Downloads page. You
need the following files:

• EEBus_SHIP_TS_Specification_v1.0.1.pdf
• EEBus_UC_TS_LimitationOfPowerConsumption_V1.0.0_public.pdf
• EEBus_UC_TS_LimitationOfPowerProduction_V1.0.0_public.pdf
• EEBus_SPINE_TS_ProtocolSpecification.pdf

Acceptance
Criteria

1. Demonstrate complete EMS behavior for at least 3
controllable device types.

2. Show plan negotiation, power limit enforcement, and
fallback handling.

3. Run scenario-based tests aligned with Use Case specs.
4. Correct state machine transitions and SPINE interaction

logic must be validated.
Documentation &
Testing

1. Open-source code and installation guide
2. Use Case mapping (per supported Use Case)
3. Sequence diagrams and SPINE flows

https://www.eebus.org/specifications/download-specifications/

RFP Residential Flexibility 16 / 42

4. Test logs for each Use Case and scenario
5. Overview of actor-role bindings and capabilities

3.3.2 WP3B – SHIP and SPINE Implementation (Device-side)

Description Implementation of SHIP and SPINE on a flexible device (FEID)
such as EVSE, battery, or HVAC. The device must receive and
respond to EMS signals as defined by the relevant EEBUS Use
Cases.

Technical
Requirements

1. Languages: C/C++, Rust
2. Implement EEBUS actor role: Controllable System
3. Support all mandatory scenarios from the following Use

Cases:
o LPC – Limitation of Power Consumption
o LPP – Limitation of Power Production (if applicable)

4. Respond to:
o Active power limits (LPC/LPP)

5. Maintain required SPINE message interfaces, state
machines, and scenario flows.

6. Implement fallback behavior, heartbeat handling, and plan
acceptance logic.

Reference Files Sames as WP3A
Acceptance
Criteria

1. Device responds to EMS instructions with correct timing
and logic.

2. Supports all required Use Case message sequences.
3. Handles failsafe behavior and reverts under

communication loss.
Documentation &
Testing

1. Integration guide and message API documentation
2. Sequence charts per Use Case
3. List of supported scenarios and message types
4. (Simulated) EMS test results

3.3.3 Common Requirements (for WP3A and WP3B)

The following protocol-level requirements apply to all EEBUS implementations across
WP3A and WP3B.

SHIP (Secure IP Communication)

All components must implement:
• TLS 1.2+ with mutual authentication (mTLS)
• PIN-based certificate pairing process
• mDNS-based device discovery and announcement
• Lifecycle and key management (pairing, removal, rekeying)

RFP Residential Flexibility 17 / 42

• Encrypted WebSocket framing as transport

SPINE (Semantic Communication)

• Only implement SPINE messages defined in selected Use Cases
• Follow all role-specific message flows and cardinality rules
• Implement required state machines per actor
• Use dynamic feature binding and subscription mechanisms
• Reject or ignore messages outside defined Use Cases

3.4 WP4 – Local Modbus Converter

3.4.1 WP4A – Local Converter for Modbus Devices

Description A bridge that connects Modbus RTU/TCP assets to standard
protocols (S2, EEBUS, or Matter). The converter must act as a
virtual device: presenting itself as a Resource Manager in S2 and
as an EEBUS responder using SPINE function sets, while
communicating with a real asset via Modbus on the backend.

Technical
Requirements

1. Suitable for embedded Linux or gateway-class devices
2. Configuration must support units, scaling, steps,

procedures, etc.
Acceptance
Criteria

1. Implements at least one protocol stack (e.g. S2, EEBUS
and/or Matter)

2. All protocols (WP 1 t/m 3) should be able to run on the local
converter

3. One protocol must be implemented using one of WP1 – 3
deliverables.

4. Configurable mapping between Modbus registers and
standard fields

5. Data-driven mapping (no code changes for profile updates)
Documentation &
Testing

1. Public Git repository for config/mapping files (will be
created by ElaadNL upon request)

2. Example mapping profile for each supported asset type

3.5 WP5 – OCPP Integration

3.5.1 WP5A – OCPP “Light” Connector (HEMS-side)

Description A connector that enables the HEMS to act as a minimal OCPP
backend (CPMS) to communicate with local OCPP Controllers.
It supports only the subset of messages needed for local energy
control, and receives data from one or more downstream
controllers.

RFP Residential Flexibility 18 / 42

Technical
Requirements

1. Conforms to OCPP 1.6j, 2.0.1, and/or 2.1 depending on
configuration

2. Works alongside or within the HEMS local controller
Acceptance
Criteria

1. Supports sending the following OCPP messages:
a. SetChargingProfile
b. ClearChargingProfile

2. Supports receiving and handling the following messages:
a. BootNotification
b. MeterValue

3. Able to address individual charge points by ID
4. Gracefully handles status updates and failure reports

Documentation &
Testing

1. Sample code that helps to integrates the OCPP connector
in a HEMS

3.5.2 WP5B – OCPP Controller

Description A local controller that emulates a virtual charging station from
the HEMS perspective. It intermediates between HEMS-issued
charging profiles and those from the CPO, prioritizing grid-level
limits while locally balancing power.

Technical
Requirements

1. Acts as a virtual EVSE from HEMS view
2. Transparent OCPP proxying with override capability
3. Maintains logs of control decisions and command origins

Acceptance
Criteria

1. Supports OCPP 1.6j, 2.0.1, and/or 2.1 depending on
configuration

2. Accepts and interprets HEMS-issued TxProfile or
SetChargingProfile messages

3. Applies local profiles without violating active CPO profiles
4. Aggregates metering values from connected EVSE unit
5. Performs local power allocation based on available

headroom
6. Ensures total site consumption remains within CPO-

imposed envelope
7. Emulates one or more virtual charge points to the upstream

HEMS
8. Supports seamless fallback to CPO-only control if local

control fails
Documentation &
Testing

1. Test cases for TxProfile reception, override resolution, and
limit adherence

2. Logging format for metering and event traces

RFP Residential Flexibility 19 / 42

4. Development Guidelines
4.1 Non-functional Requirements

To ensure the HEMS and Connected Assets software works reliably in real-world
deployments, it’s not enough to focus solely on functional features. The software must
also be secure, platform & architecture independent, scalable, maintainable, well-
documented, and easy to update. Based on market feedback and technical sessions,
we’ve identified the most important non-functional areas to address.

Best practices and standard workflows apply to all non-functional areas and will be
enforced across all work packages.

4.1.1 Security

1. Support for low-resource devices: Must accommodate low-resource devices (e.g.
embedded Modbus converters).

2. Protocol-native security first: All connectors must implement and adhere to the
security features defined by the protocol they support (e.g. TLS in SHIP, digital
signatures in S2). We do not impose additional security layers beyond those
specified by the protocols are not required unless there is a clear operational
need.

3. Secure by specification: The protocols used in this project (S2, EEBUS, etc.)
already define encryption, authentication, and session integrity. Implementations
must follow these specifications precisely and completely.

4. For components that include cloud communication (e.g. 4C variants), security
measures such as authentication, encryption, and access control must be
included in the proposal. ElaadNL will assess their adequacy during evaluation.

4.1.2 Quality

1. Acceptance criteria: Deliverables must meet the functional acceptance criteria
as described in the work packages.

2. Automated testing: ElaadNL will facilitate a GitHub environment with CI minutes
and support for automated pipelines.

3. Code validation and review: Follow industry standard practices including
automated linting, CI builds, and peer-reviewed pull requests (internal)

4. Quality monitoring; ElaadNL will provide a shared quality assurance environment
to track quality and security risks.

5. Versioning and traceability: All code must be versioned, with atomic commits and
clear release notes, including changelogs to support traceability of updates and
integration by third parties.

6. Code must adhere to industry best practices (e.g. PEP8 linting for Python), follow
clear and consistent naming conventions, and avoid hardcoded secrets or
environment-specific logic.

RFP Residential Flexibility 20 / 42

4.1.3 Documentation

1. Functional and integration overviews: Every connector or module must include, in
English, a plain-language explanation of what it does, how it fits into the larger
system, and what protocols or devices it supports. Visuals are encouraged.

2. Usage instructions with examples: Include step-by-step guides for installing,
configuring, and using components. Provide realistic example configurations,
input/output payloads, and expected behavior.

3. Contribution and governance guidelines: Since the code will be open-source, the
repository must explain how others can contribute, raise issues, request features,
or propose changes. The review and approval process must be transparent.

4. Versioning and changelogs: Documentation must reflect the current software
version. Changes between versions must be documented clearly, especially when
they affect functionality or compatibility. Semantic versioning must be used.
Initially versions must stay within the 0.x range. The first major release will be at
the end of the initial release.

5. Consistent terminology and format: To avoid confusion across different
connectors and protocols, common terms (e.g. "asset", "setpoint", "control
signal") should be used consistently. ElaadNL may provide a shared glossary or
style guide.

6. Documentation repository and access: All documentation must be stored in the
same version-controlled repositories next to the actual code (e.g. Markdown files
in GitHub). No binary formats.

7. A template repository will be provided, for the aforementioned documentation.

4.1.4 Scalability

1. Modular design: Connectors should be built as separate, reusable modules that
can be easily integrated into different HEMS platforms and device firmware.

2. Extensible design: Connectors should be built to allow for easy extension with
additional functionality without requiring changes to the original deliverable.

3. Flexible deployment: The connectors must support deployment on both
embedded platforms (e.g. microcontrollers in heat pumps or inverters) and on
more powerful HEMS controllers (e.g. Linux gateways or local hubs).

4. Efficient use of system resources: This is especially important for the embedded
side, where devices may have limited CPU, memory, and storage. The connector
must run reliably in these constrained environments. This includes meeting all
relevant security requirements as well.

5. Cloud-optional architecture: All components must support full local operation
(with the exception of the WP1C cloud component).

4.1.5 Auditability & Logging

1. Log key actions: Connectors must log when a command is sent, when a response
is received and when an important status changes. Each log entry must include a
timestamp and a device identifier.

2. Use a clear format: Logs must follow a consistent structure that can be read and
reviewed during testing and integration sessions.

RFP Residential Flexibility 21 / 42

3. Capture errors: Errors such as timeouts, rejected commands, or unexpected
behavior must be logged in a format that supports effective analysis and
debugging.

4.1.6 Maintainability

1. Keep components modular: Each connector should have a clearly defined scope.
Small, focused modules are easier to test, update, and reuse across projects.

2. Minimize hidden complexity: Avoid tightly coupled logic, shortcuts, or opaque
implementations that make future changes difficult. The goal is to make the
connectors understandable and safe to modify.

3. Use third-party libraries sparingly. All dependencies must be well-maintained,
widely used, and have permissive licenses (e.g. MIT, BSD, ISC, Apache 2.0). Avoid
strong copyleft licenses such as GPL or AGPL. LGPL or MPL may be used only for
clearly separated libraries.

4. Support long-term updates: Connectors should be designed to evolve as
standards change. This includes the ability to add new protocol versions, fix bugs,
and adapt to feedback without breaking existing installations.

5. Follow common practices: Use standard workflows for versioning, testing, and
releasing. This allows others to contribute or take over maintenance when
needed, even years after the initial release.

6. Prevent checking in IDE specific files (e.g. .idea, .vscode, etc.).

4.2 Open-Source

All software developed under this project must be released under the Apache License
2.0 to ensure that the software deliverables can be freely used, modified, and integrated
into commercial products without legal complexity.

The goal of this project is to stimulate the market by providing open, production-ready
building blocks that accelerate development and adoption. Apache 2.0 supports this by
offering clear permissive terms, including explicit patent rights, while ensuring proper
attribution and maintaining license integrity across implementations.

4.3 Documentation Templates & Repository

To promote consistency, openness, and long-term maintainability across all
deliverables, ElaadNL provides a GitHub template as the starting point for each project
repository. This template includes key files such as README.md, CONTRIBUTING.md,
and SECURITY.md, ensuring that every repository starts with a clear structure for
documentation, contribution, and responsible disclosure. By applying the same
standards across projects, we make it easier for partners to collaborate, for third parties
to adopt and build upon the work, and for the community to maintain a high level of trust
in the quality and transparency of the software.

RFP Residential Flexibility 22 / 42

5. Project Approach & Milestones

5.1 Way of Working and Collaboration

The project follows an Agile methodology through regular sprints and iterative deliveries.
Selected parties are expected to work independently where possible and align with the
shared development process of the project.

A Technical Project Lead from ElaadNL will serve as the primary contact for all technical
matters. A shared ticketing system will be used to submit, track, and document technical
issues and inquiries. The Technical Project Lead will coordinate biweekly meetings to
monitor progress, align on architecture and resolve integration or implementation issues.
Collaboration should be transparent, proactive, and solution-oriented.

In parallel with the development work, the project aims to build a broader community of
contributors and users for the Integration Phase. If possible, code should be shared
publicly at an early stage to encourage early feedback and promote code reuse. The
approach, timing, and platform for public sharing will be discussed and agreed upon with
partners during the project.

5.2 ElaadNL’s Role and Responsibilities

ElaadNL has a strong track record in improving technical connectivity and
standardization for EV charging. It has since expanded its focus to other household
assets and developed its own HEMS and device integrations in its lab environment. In this
project, ElaadNL serves as coordinator and executor, without a commercial role in the
HEMS or device market.

Area Contribution

Coordination &
Project
Management

Drafts test scenarios, manages schedules and guides
documentation; safeguards openness and standardization.
Coordinates development across partners and has final authority
on resolving technical issues.

Network &
Ecosystem

Leverages its links with grid operators, research institutes and
industry partners to involve key stakeholders. TNO, FAN and the
Ministry of Economic Affairs and Climate are already engaged.

Open-source
Support

Helps set up and maintain a public repository (e.g. GitHub) for
connectors and tools to ensure continuity.

Test Facilities
Provides its EV & Smart Charging Test Lab for neutral demos and
integration tests of devices and HEMS solutions.

Knowledge
Sharing

Publishes anonymized findings to advance interoperability,
respecting IP and commercially sensitive data.

RFP Residential Flexibility 23 / 42

5.3 Delivery Plan
Phase Activity Timeline Milestones

1. • Kickoff
• ElaadNL sets up Git repo,

SonarQube, and tooling per
connector.

• ElaadNL provides documentation,
OpenADR connector and Resource
Managers

• Preparation time for partners to
prepare project

Nov ’25 • Refined sprint
planning teams

• Refined delivery plan

2. • Development in sprints including
demo at end of every sprint

Dec ’25 -
Mar ’26

• Code in ElaadNL
repo (starting private)

3. • Final demo of the developed
software, demonstrating
successful communication
between HEMS and FEID across all
three use cases

April ’26 • Implementation of
standards validated

• Usecases validated

4. • Final documentation & handover May ’26 • Code in ElaadNL
repo (now public)

* See also the overall planning in Section 7

5.4 Acceptance Criteria & Final Demonstration

Final acceptance of each work package is based on successful execution of end-to-end
interoperability tests during the final demonstration. This includes demonstrating correct
communication between the HEMS and the device using the selected protocol(s), and
that control actions are executed correctly and reliably.

ElaadNL will manage the final demonstration and, upon completion, assume
responsibility for ongoing coordination, maintenance, and updates. Parties are
encouraged to indicate their willingness to remain involved after the project ends, e.g. by
offering continued support or contributing to code maintenance on an offer basis.

Practical Arrangements for Final Demonstration

• Parties are expected to bring their own devices and necessary hardware to the test
lab.

• The ElaadNL test lab provides electrical connections, test setups, physical space for
demonstrations, and on-site support and technical expertise for setup and testing

Participants are responsible for bringing the necessary personnel and equipment to
demonstrate their solution. For specific shared components such as the Modbus
converter or OCPP controller, limited facilities may be made available, with details to be
discussed on a case-by-case basis.

RFP Residential Flexibility 24 / 42

6. Participation & Eligibility

6.1 Eligible Parties and Roles

The RFP distinguish two primary categories of eligible parties:

1. Suppliers of HEMS solutions

This includes HEMS vendors, EMS providers, manufacturers, and aggregators.
These parties must demonstrate:

• Proven experience with energy management systems
• Integration capabilities with energy assets (e.g. batteries, inverters, smart

meters, charge points)
• Compliance with relevant standards (e.g. OpenADR, S2, Matter, EEBUS, or

equivalent)

2. Suppliers of flexible energy-intensive devices (FEID)

This includes manufacturers of batteries, inverters, EV chargers, or heat pumps.
These parties must demonstrate:

• A track record of delivering certified hardware
• Availability of open APIs or documented protocols for integration
• Support for secure remote communication and control

Participation per Work Package

For Work Packages 1, 2, and 3, Proposers must apply for the entire work package. This
means the proposals must cover the full chain: a HEMS supplier, a flexible energy-
intensive device supplier, and a party responsible for end-to-end software development,
either in-house or through a contracted partner.

For Work Package 4, it is possible to apply for software development only, without a
supplier; however, the proposal must include a hardware module that can be
independently connected via Modbus.

For Work Package 5, it is possible to apply for the HEMS side only. Software development
may be performed by an in-house team or a partnering software company. ElaadNL will
provide a charge point device compatible with OCPP 1.6j, 2.0.1, and/or 2.1.

RFP Residential Flexibility 25 / 42

Note on Consortia and Matchmaking

Standalone software development companies are not eligible to apply independently.
They must be part of a consortium that includes a qualifying HEMS and/or device
Proposer, who will take responsibility for functional integration and field applicability.

If you are seeking a partner, you may indicate this in your proposal. ElaadNL may assist
matchmaking by connecting interested parties.

6.2 Responsibilities of Selected Partners
Selected partners will be responsible for delivering their contribution in close
coordination with the project. Responsibilities include, but are not limited to:

• Actively participating in planning, coordination, and progress meetings.
• Providing a single point of contact for the project.
• Delivering agreed-upon components or services according to timeline and

specifications.
• Ensuring technical compatibility and integration with the described standards and

architecture described in this document.
• Providing timely documentation, support, and updates during development,

testing, and deployment.
• Participating in the integration phase and interoperability test phase after

completion of this project.
• Committing resources for issue resolution, bug fixing, and optimization

throughout the project.

RFP Residential Flexibility 26 / 42

7. Planning

 Description Deadline
1. Publication of RFP Thu. 24 July 2025
2. Deadline for Proposers to submit questions Tue. 26 August 2025
3. Written responses to Proposer questions Mon. 1 September 2025
4. Submission deadline for proposals Fri. 19 September 2025
5. Notification to all Proposers of results Fri. 26 September 2025

Submitted questions will be answered no later than 1 September 2025.

ElaadNL reserves the right to adjust this schedule. In such cases, all Proposers will be
informed accordingly. Proposals must be submitted by email to Marisca Zweistra at
rfp@elaad.nl no later than Friday 19 September 2025, 17:00 CET. Late submissions will
not be considered.

RFP Residential Flexibility 27 / 42

8. Proposal Questionnaire

1. Provide contact details and a brief summary of all parties involved in the proposal.

2. Which work package(s) are you submitting a proposal for?
• List the work package, protocol, and the type and model of the HEMS and/or

device

3. Describe your approach for the first sprint for preparation for the development
phase.
• What will you do?
• What needs to be set up?
• What support or input do you expect from the project team?

4. Give an estimate of the two-week-sprints you expect to need to develop the work

package and describe the deliverables per sprint

5. Which programming languages do you plan to use? If known, please also list any
key libraries, framework, or tools you expect to use.

6. Describe your approach how you will deal with the described non-functional

requirements: Security, Quality, Documentation, Scalability, Auditability, and
Maintainability (See Section 4.1).

7. Please list the key team roles and briefly describe each team member’s relevant

experience. (Names of members are not required)
• Include roles such as developer, architect, tester, etc., indicate experience

level (e.g. junior, senior, years of experience), and dedicated time per week (in
hours)

8. Provide two reference projects that demonstrate your team’s relevant expertise.

• Briefly describe the project, your role, and technologies used.

9. Provide a cost breakdown for an all-inclusive price per phase (Section 5.3)
• Please include all expected costs (e.g. development, project management,

testing, coordination).

RFP Residential Flexibility 28 / 42

9. Evaluation & Selection

Proposers are asked to make an offer (free format) based on the criteria outlined in this
document, and, in particular the questions listed in Section 8. The evaluation will be
conducted by a panel consisting of representatives from ElaadNL, FAN, and selected
domain experts.

 Evaluation Criteria Weight
1. Technical Approach & Planning

• Description of approach to non-functionals (see Section 4.1).
• Description of preparation sprint (see Section 5.3).
• Description of proposed timeline with development sprints and

expected deliverables per sprint (see Section 5.3).

25%

2. Team & Expertise
• Description of team, roles, seniority and dedicated FTEs.
• Two relevant references of similar projects.

25%

3. Pricing & Funding
• Cost breakdown per phase described in Section 5.3.
• Any in-kind contributions or co-funding (if applicable)

50%

All proposals will be evaluated based on the following criteria:

• Alignment with the project’s objectives and technical requirements.
• Completeness and clarity of the answers provided.
• Quality of responses, assessed for clarity, conciseness, transparency, and

practical feasibility.
• Each answer will be evaluated as follows:

o Full points for clear, complete, and relevant answers.
o Partial points for incomplete or partially relevant answers.
o No points for missing or insufficient responses.

• For Pricing & Funding, prices will be benchmarked against the lowest offer
submitted within the same work package.

The selection process will proceed as follows:

1. Initial screening to ensure eligibility and completeness. (Section 6)
2. Evaluation based on the criteria above resulting in a score.
3. Optional clarifications or interviews with parties, if needed.
4. Final selection and notification to Proposers (see Section 7).

RFP Residential Flexibility 29 / 42

10. Commercial & Legal Terms
10.1 General
• This RFP does not constitute any obligation or commitment of ElaadNL towards any

Proposer. ElaadNL will select Proposers at its discretion and maintains discretionary
freedom whether and with whom it will enter into an agreement.

• Termination for Convenience of any agreement after award of a WP is allowed as
follows: ElaadNL may end the agreement with thirty (30) days’ notice. Proposer is
entitled to payment for its deliverables accepted up to the termination date.

• Any deviations from the requirements of the RFP must be clearly referenced and
explained by Proposer.

• Initial proposals received after the closing date will NOT be considered.
• Where any offered deliverable differs from the requirements, it should be clearly

identified by Proposer as such since ElaadNL will in general assess and compare only
those proposals determined to be substantially compliant with the requirements of
the RFP.

• Notwithstanding any other provision or comment herein, ElaadNL may, at its
discretion, waive any non-conformity or irregularity in a submission.

• After the closure of the RFP, ElaadNL may request additional information,
clarifications and/or verifications with respect to any item contained in the proposal.
Proposer shall endeavor to respond as quickly as possible to any such requests.

• To assist in the assessment and comparison of proposals, ElaadNL may also seek
the attendance of Proposer at meeting(s) to be held at ElaadNL’ offices or other
locations.

• Proposer’s proposal shall lead to a contract with ElaadNL, and all commitments
made by Proposer in the proposal and during the RFP process will, if acceptable to
ElaadNL, be included in the agreement between ElaadNL and Proposer for such WP.

• This RFP and any awards to Proposers shall be governed by Dutch law. All disputes
shall be submitted exclusively to the District Court of Gelderland, location Arnhem.

10.2 Pricing & Payment
• The project operates on a fixed-price model for each project phase, with deliverables

and milestones defined in Section 5.3. If a Milestone is delayed by >10 calendar days,
the parties meet within five (5) working days to agree a recovery plan. Failing
agreement, ElaadNL may terminate the WP allocated to the Proposer for the
remaining scope without liability beyond Section 10.4.

• 30% of the total amount will be retained until final acceptance of all deliverables
following successful demonstration and documentation (see Section 5.4).

• Testing at the ElaadNL Lab is free of charge.
• All parties are responsible for their own costs, including development, travel, internal

validation, and participation in test events.
• Partial payments will be issued following successful completion of agreed testing

milestones and sprint demonstrations.

RFP Residential Flexibility 30 / 42

10.3 Intellectual Property & Licensing
• All software deliverables must be released under the Apache 2.0 License.
• Proposers must confirm their commitment to open-source development and agree

to publish their contributions under this license.
• All intellectual property (IP) rights in the developed software will be transferred to

ElaadNL including all source code, documentation, and related materials created
under this RFP.

• ElaadNL will manage the official Git repository and ensure long-term public
availability.

• The Apache 2.0 License allows for free use, modification, and integration by third
parties, while preserving attribution and legal clarity.

• Proposer indemnifies ElaadNL and any future users of its deliverables against third-
party claims alleging IP infringement by the software, covering reasonable legal costs
and damages.

10.4 Public Availability & Handover
• Final delivery must include working, versioned code, documentation, and integration

into public Git repository as specified in Section 4.3.
• Code must pass quality checks (e.g. SonarQube, CI) and be accompanied by usage

examples and changelogs.
• All deliverables must remain publicly accessible after project completion.

10.5 Limitation of Liability
• All open-source contributions are provided “as is.” ElaadNL is not liable for any direct

or indirect damages resulting from their use or integration.
• Proposer’s cumulative liability for direct loss is limited to the greater of 125% of the

actual payments by ElaadNL.
• Proposer is not liable for indirect or consequential loss (e.g. loss of profit, loss of

data) unless in case of gross negligence or willful misconduct attributable to
Proposer.

• ElaadNL shall not be liable for any damages arising out of or related to this RFP or the
Agreement, save to the extent such damages are the direct result of ElaadNL’s willful
misconduct or gross negligence. Under no circumstances shall ElaadNL be liable for
indirect or consequential loss.

10.6 Funding Contingency & Withdrawal of RFP

ElaadNL may, in good faith and upon written notice, withdraw this RFP or
suspend/terminate the RFP and agreement after award of a WP to a Proposer, wholly or
partly, if expected public or grant funding is not secured or materially reduced. In such
case ElaadNL reimburses only documented, reasonable costs that: (a) relate directly to
Deliverables already accepted in writing; and (b) cannot be mitigated or re-purposed. No
further compensation shall be due.

RFP Residential Flexibility 31 / 42

Appendices

A. Project Background and Goals
A.1 Context and Motivations

A key barrier to unlocking residential flexibility is the lack of interoperability between
devices. Products from different manufacturers often lack compatibility. ElaadNL and
FAN aim to ensure that by 2027, a broad and appealing range of interoperable devices
will be available on the market. To achieve this, a multi-year program was launched in
2024, as outlined in the figure below.

This initiative is carried out by ElaadNL on behalf of the Dutch grid operators and is part
of the National Grid Congestion Action Program (LAN). Its goal is to improve the
interoperability and controllability of flexible energy-intensive devices, thereby enabling
residential flexibility.

The first step-mapping the protocols and architecture for residential flexibility was
completed in early 2025 with the delivery of a report. This was followed by a Request for
Information (RFI) and a series of thematic deep-dive workshops. Building on this
groundwork, this Request for Proposal (RFP) initiates the implementation of an approach
to improve the use of communication protocols for devices in and around the home.

Key considerations shaping the scope and approach of this RFP:

• Wide variety of available protocols. In practice, many different communication
protocols are used to control and coordinate household devices, requiring a
HEMS to integrate at least ten protocols to achieve basic interoperability.

• Need for a defined protocol set. Market feedback indicates that selecting a
small, well-defined set of protocols is essential for covering communication to
and within the home.

RFP Residential Flexibility 32 / 42

• Proposed selection. This RFP narrows the field to one protocol for
communication to the home, four protocols between HEMS and devices, with at
least one applicable to flexible energy-intensive devices, favoring internationally
adopted, existing protocols.

• Future-proofing and backward compatibility. Many current protocols cannot
expose the full flexibility potential of devices. The selected protocols are future-
proof for new devices and provide a path to improve interoperability of the existing
installed device base.

• Market collaboration. Industry stakeholders have expressed willingness to
advance interoperability while safeguarding commercial interests. The approach
relies on open-source development and shared test facilities.

• Agile approach. Market parties recommended enabling early testing and step-by-
step open-source development.

• Three core use cases. Improved interoperability must support residential
flexibility for consumers, market actors and grid-operators. Therefore, message
flows and end-to-end tests will address the following:

1. control based on available grid capacity (network objective),
2. control based on dynamic electricity prices (market objective), and
3. control to optimize the use of self-generated energy.

A.2 Urgency

The following developments demonstrate the urgency to have commercially available
HEMS solutions that are interoperable with multiple products and brands, and that can
process external signals:

• A growing number of energy contracts with dynamic tariffs
• The discontinuation of net metering (salderingsregeling) and introduction of feed-

in charges for self-generated power
• The need to mitigate looming congestion on the low-voltage grid
• The introduction of an alternative network-tariff system for small consumers

As noted in Section 2.2, the project focuses on three use cases that reflect the above-
mentioned drivers for residential flexibility. Of course, a HEMS can support many other
use cases, both now and in the future, such as optimizing comfort, monitoring energy
usage, and balancing household loads.

A.3 General Architecture
This document provides detailed architectural overviews of the specifications for
components to be built and tested and describes the selected protocols and devices
used in different use cases. All components fit in the general architecture, which consists
of:

RFP Residential Flexibility 33 / 42

• Three layers: steering entity, aggregator,
and home.

• Steering entities: parties such as DSO,
TSO and BRP, responsible for managing
capacity and/or balancing load through
information or control signals.

• Market-driven flexibility: an aggregator (or
another market entity) receives these
signals and translates them into control
actions directed at households.
Examples include dynamic energy tariffs
and standardized signals to temporarily
lower a household's capacity limits.

• In-home coordination: A HEMS coordinates the response of available flexible
devices to control signals.

• HEMS implementation: functionality can be implemented through a physical
device in the home, through the cloud (with each device connecting separately),
or as a hybrid of both.

A.4 Key Use Cases
For this project, we selected three key use cases for testing. By developing open-source
connectors, additional use cases can be added in the future.

1. Limiting Peak Grid Demand

The first use case focuses on limiting grid capacity. The Dutch power grid experiences
constraints due to demand peaks, especially during winter. By forecasting grid load, the
DSO can calculate a capacity profile that defines upper limits for both feed-in and usage.
The HEMS, as the home’s central controller, receives these messages and uses the
available device flexibility to always keep the household connection within specified
limits at all times.

In this scenario, the capacity profile is sent either (a) from the grid operator to an
aggregator, and then to the HEMS; or (b) directly from the grid operator to the HEMS. In
both cases, the capacity profile is sent through an OpenADR open-source connector
provided by ElaadNL.

RFP Residential Flexibility 34 / 42

2. Dynamic Tariff Optimization

The second use case centers on control based on dynamic electricity tariffs. The HEMS
can optimize a household’s energy costs by, for instance, storing cheap power in a battery
or as heat in a hot water buffer allowing the home to draw on its own reserves during
expensive periods. The guiding principle is to avoid unnecessary consumption when
prices are high and to exploit cheaper periods whenever they occur.

In this scenario, dynamic tariffs are provided via proprietary APIs (e.g. ENTSO-E) and
communicated to the HEMS. Currently, there is no widely adopted open standard for
accessing or processing dynamic tariff data. Based on feedback from the earlier RFI,
market parties indicated that developing a new standard is not necessary at this stage,
and proprietary solutions are currently considered sufficient.

3. Optimize the Use of Self-Generated Energy

The third use case focuses on maximizing the consumption of generated solar power in
the household. When generation exceeds immediate household demand, the HEMS can
distribute surplus energy intelligently by e.g. charging a home battery and/or EV to
increase self-consumption.

This not only improves the household’s energy efficiency and independence, but also
optimizes electricity costs and reduces stress on the local grid, especially during periods
of high solar generation.

In this scenario, the HEMS monitors local production and manages energy flows to
optimize the use of self-generated power, based on local production data, local usage
data, and/or smart grid meter data.

https://newtransparency.entsoe.eu/market/allocation/implicit/dayAhead?appState=%7B%22sa%22%3A%5B%22BZN%7C10YNL----------L%22%5D%2C%22st%22%3A%22BZN%22%2C%22mm%22%3Atrue%2C%22ma%22%3Afalse%2C%22sp%22%3A%22HALF%22%2C%22dt%22%3A%22TABLE%22%2C%22df%22%3A%5B%222025-07-16%22%2C%222025-07-16%22%5D%2C%22tz%22%3A%22CET%22%7D

RFP Residential Flexibility 35 / 42

B. Open-Source and Interoperability Testing
B.1 Development of Open-Source Software

ElaadNL aims to develop modular open-source software that translates control signals,
both from within the home and from external parties such as grid operators—into
concrete control commands for devices via a HEMS. This software must be easy to
integrate into commercial HEMS products, enabling market players to unlock residential
flexibility quickly and efficiently.

Our proposed approach includes:

1. Start with core flexibility functionality. Begin with a limited set of messages
from a small number of flexibility protocols (within and to the home), allowing for
rapid early progress.

2. Conduct open-source development via one or more partners. Message sets
for the selected protocols will be developed in collaboration with parties willing
to publish open-source software.

3. Provide HEMS solutions and devices for testing. Participating partners must
provide existing or newly developed HEMS solutions and devices for end-to-end
testing using predefined communication protocols.

4. Ensure active technical participation. Technical experts and engineers are
expected to join test and demo sessions (on-site or remote) to validate
interoperability in practice.

5. Jointly develop and execute test scenarios. ElaadNL will collaborate with
participants and standardization bodies to design and carry out relevant test
cases.

6. Demonstration three defined use cases. Use cases will focus on capacity
limiting, dynamic tariff optimization, and optimization of self-generated energy
use.

B.2 Testing and Demonstrating Interoperability

ElaadNL aims to accelerate the market development of interoperable, customer-
installable (“plug-and-play”) solutions between HEMS and connected devices. To
support this, selected parties will be invited to actively test and demonstrate their
products in a controlled technical environment—such as the ElaadNL TestLab. Parties
not involved in open-source development are explicitly encouraged to participate in the
Integration Phase.

The expectations for test and demonstration phase include:

RFP Residential Flexibility 36 / 42

1. Integration Phase via public availability. All open-source software developed in
this project will be freely available, enabling other parties to implement the
protocols easily and cost-effectively.

2. Interoperability Test Phase to support scaling. Practical insights from protocol
implementation will be shared with organizations such as NEN to support the
development of national (mandatory) and ideally European standards.

3. Exploration of certification options. The project will explore certification
opportunities to ensure long-term compliance, potentially in collaboration with
formal certification bodies.

This joint effort aims to deliver practical, and reliable implementations of interoperability
that support a more flexible and stable energy system.

RFP Residential Flexibility 37 / 42

C. Implementation Scenarios

Several architectural approaches are possible for designing the control chain. No
definitive architecture has been selected for the Netherlands—or for Europe—at this
time. The goal of this project is to develop limited message sets for selected protocols
are applicable across different architectural models.

This RFP focuses on the connectivity between the HEMS and the connected devices. For
connectivity between the HEMS and the grid operator—whether directly or via an
aggregator—the OpenADR 3.0 protocol will be used. ElaadNL will provide open-source
software for this purpose, which HEMS vendors can integrate into their solutions.
Alternatively, HEMS vendors may implement OpenADR support using their own software.

The referenced diagram illustrates functional communication between HEMS and
devices. It intentionally does not differentiate between local and cloud-based control
models. The HEMS serves as the central component and must support multiple
protocols, as listed in Section 1.4. Devices may connect using one or more of the
supported protocols.

Another key function of the HEMS is translating energy system messages into device
control schedules. The second diagram focuses on this specific HEMS role.

RFP Residential Flexibility 38 / 42

Note on Modbus The HEMS is unlikely to support Modbus directly. Due to the limitations
discussed in Section D.1, devices using Modbus should instead interface with the HEMS
via another supported protocol (e.g. S2, EEBUS, or Matter). Modbus is expected to be
used only locally and translated at the device level, ensuring that all HEMS-facing
communication follows a more secure and interoperable protocol.

To illustrate local versus cloud flows, the following sections present several
implementation variants and associated use cases.

C.1 Local HEMS

1a.

The first implementation scenario is
based on a fully local HEMS setup.

RFP Residential Flexibility 39 / 42

1b.

A specific variant of this involves
communication from the local HEMS
to a local control system managing
one or more energy-intensive
devices.

C.2 Cloud-based HEMS

Another implementation scenario involves a cloud-based HEMS architecture. Two
control routes are defined below.

2a.

Communication from the cloud-based
HEMS to a local control system that
manages the devices.

2b.

Direct communication from the cloud
HEMS platform to the individual
device.

RFP Residential Flexibility 40 / 42

D. Technical Considerations
D.1 Modbus

Modbus has long been a widely accepted industrial standard for communication
between devices such as sensors, control systems, and other industrial components. It
is reliable, simple, and, most importantly, it works. There are two main variants: Modbus
RTU, which uses serial communication, and Modbus TCP, which runs over IP networks.

Modbus TCP is increasingly popular due to its compatibility with modern networks.
However, despite its technical reliability, Modbus lacks fundamental security features.
Modbus TCP does not support any form of authentication. This means any device or
person on the same network could, in principle, send commands to the system, posing
a serious risk.

Although encryption is technically possible, it is rarely implemented in practice. As a
result, communications are often readable and modifiable by anyone with network
access, including hackers or malware.

This risk is amplified by the fact that an increasing number of flexible energy-intensive
devices, such as EV chargers, heat pumps, and home batteries, support Modbus TCP. In
a coordinated attack (e.g. as in the FrostyGoop1 incident), malware could control
multiple devices simultaneously, with potentially severe consequences for grid stability.

In theory, network segmentation (e.g. VLANs or dedicated subnets) could reduce this
risk. In practice, however, such measures are rarely implemented in residential
environments. Most households run everything on a single network, making it easy for
malicious software to spread or abuse devices.

At the same time, Modbus is still widely supported by OEMs and manufacturers of flexible
energy-intensive devices. It is therefore hard to ignore in any HEMS strategy.

Therefore, ElaadNL invites proposers to help develop secure ways to integrate Modbus
into EMS/HEMS solutions in Work Package 4. Proposals may include:

• Middleware or proxy solutions that act as intermediaries between the HEMS and
Modbus device, adding layers of security (e.g. authentication or filtering)

• Translation components that convert secure protocols (e.g. EEBUS or S2) into
Modbus commands for legacy devices

1 In the FrostyGoop attack, heating systems in 600 buildings were taken over via Modbus TCP. Legitimate commands
were intercepted and replaced through compromised network devices such as routers and gateways, giving attackers
full control over energy consumption and management in those buildings.

RFP Residential Flexibility 41 / 42

• Other solutions that support secure and practical use of Modbus in modern EMS
architectures

The goal is to collaboratively develop a secure, practical, and future-proof Modbus
integration within the broader HEMS ecosystem. We encourage open-source
contributions or use of well-documented, existing standards wherever possible.

D.2 OCPP
For local control of EV chargers within an
EMS (Energy Management System), we
seek an open-source implementation of
an OCPP 2.1 proxy.

This proxy should enable the injection of
control signals and power profiles from
the EMS into the communication
between the EV charger and the CSMS
(Charging Station Management System),
without interfering with backend
functions such as billing, authorization,
or logging.

OCPP 2.1 includes a Local Controller feature in which the proxy acts as a middleware
layer— it behaves like a CSMS from the perspective of the charger and like a charger from
the perspective of the backend. Both connections use WebSockets with the same URI
and charger ID. The proxy forwards messages in both directions and can also send OCPP
messages (e.g. ChargingProfiles) directly to the charger, provided unique message IDs
are used.

We are looking for an implementation that:

• Is fully compliant with OCPP 2.1, including WebSocket and JSON support
• Operates securely, using TLS server mode toward the charger and TLS client mode

toward the CSMS, using custom certificates
• Supports the injection of EMS control signals and power profiles through a clear

API (REST or Python interface)
• Is open-source under an Apache 2.0 license
• Includes comprehensive documentation, example code, and automated tests

The goal is to enable local control of EV chargers based on solar generation, battery
status, or power limits, without disrupting the commercial backend functions (e.g. billing
or management). The proxy should be lightweight, reusable, and easy to integrate into
existing HEMS environments.

RFP Residential Flexibility 42 / 42

E. Technical Information
E.1 Cross-Protocol Terminology Glossary

Generic Term S2 (EN 50491-12-2) EEBus / SPINE Matter 1.4 Notes / Usage in RfP

Home Energy Manager CEM (Customer Energy Manager) CEM (Central Energy Manager) Controller (multi-admin Node)
Core orchestrator; receives grid signals, price
signals; issues control instructions.

Device / Asset RM (Resource Manager) SPINE Actor (e.g. EVSE, PV, Battery) Node (with Endpoints) Controlled resource with flexibility; supports
one or more control types.

Function Control Type (PEBC, FRBC…)
Use Case + Data Point via SPINE
Features/Functions Endpoint (Device Type + Clusters)

Logical controllable capability (e.g. charge EV,
curtail PV).

Constraint
PEBC.PowerConstraints,
EnergyConstraints

LoadControlLimitListData,
LoadControlEventListData / represented
in SPINE LoadControl feature

DeviceEnergyManagementMode
cluster (PA, CON)

Operational or grid-imposed envelope defining
limits.

Instruction / Schedule PEBC.Instruction (PowerEnvelope)
LoadControlEventListData /
ScheduleListData equivalent — within
LoadControl feature

Energy Management Schedule
cluster

Optimization signal sent to device (e.g.
when/how to operate).

Status / Feedback
InstructionStatusUpdate,
ReceptionStatus

LoadControlStateListData, SPINE result
objects

Cluster attributes (state,
measurement)

Confirms instruction execution, rejects, or
adjusts.

Measurement PowerMeasurement, PowerForecast MeasurementListData (real-time or
forecast)

ElectricalMeasurement cluster Real-time reporting; supports optimization and
feedback loops.

Device Type Declared via SystemDescription SPINE Actor Type (e.g. EVSE, Battery) Device Type Library Used to express capabilities and bind control
logic.

Topology CEM ↔ RM over s2-ws-json
SHIP (transport layer) + SPINE (data
model) Fabric with Nodes, Admins, Clusters

Logical and transport-level structure for
interoperability.

Transport Protocol s2-ws-json (WebSocket/JSON) SHIP over IP (WebSocket/TLS) Matter IP stack (Thread, Wi-Fi,
Ethernet)

Actual protocol stack—semantic alignment
possible.

Security Domain
Session/Handshake with
role/authentication

Device Binding in SHIP sessions Fabric (shared credentials, ACLs) Defines which controller can manage which
device.

Energy Use Case Control Type + Forecast + Instruction SPINE Use Case Model + Features Cluster interaction + Device Types
Examples: Grid capacity, dynamic price, self-
consumption.

Interoperability Layer S2 semantic model SPINE data model
Matter data model
(Clusters/Endpoints)

Defines data structure and intent for
commands and feedback.

	Request For Proposal (RFP): Residential Flexibility, Interoperability HEMS and Flexible Energy-Intensive Devices
	Definitions and Acronyms
	Contents
	1. Introduction
	2. Scope of Work
	2.1 Objectives
	2.2 Key Use-Cases
	2.3 Project Scope and Boundaries
	2.4 Work Packages

	3. Technical Specifications for the Deliverables
	3.1 WP1 – S2 Protocol
	3.1.1 WP1A – PEBC Control Implementation (HEMS-side)
	3.1.2 WP1B – PEBC Control Implementation (Device-side)
	3.1.3 WP1C – PEBC Receiver (HEMS Cloud) (Optional)

	3.2 WP2 – Matter Protocol
	3.2.1 WP2A – Matter Implementation (HEMS-side)
	3.2.2 WP2B – Matter Implementation (Device-side)
	3.2.1 WP2C – Matter-Compatible Cloud Gateway (Optional)

	3.3 WP3 – EEBUS Protocol
	3.3.1 WP3A – SHIP and SPINE Implementation (HEMS-side)
	3.3.2 WP3B – SHIP and SPINE Implementation (Device-side)
	3.3.3 Common Requirements (for WP3A and WP3B)
	SHIP (Secure IP Communication)
	SPINE (Semantic Communication)

	3.4 WP4 – Local Modbus Converter
	3.4.1 WP4A – Local Converter for Modbus Devices

	3.5 WP5 – OCPP Integration
	3.5.1 WP5A – OCPP “Light” Connector (HEMS-side)
	3.5.2 WP5B – OCPP Controller

	4. Development Guidelines
	4.1 Non-functional Requirements
	4.1.1 Security
	4.1.2 Quality
	4.1.3 Documentation
	4.1.4 Scalability
	4.1.5 Auditability & Logging
	4.1.6 Maintainability

	4.2 Open-Source
	4.3 Documentation Templates & Repository

	5. Project Approach & Milestones
	5.1 Way of Working and Collaboration
	5.2 ElaadNL’s Role and Responsibilities
	5.3 Delivery Plan
	5.4 Acceptance Criteria & Final Demonstration

	6. Participation & Eligibility
	6.1 Eligible Parties and Roles
	6.2 Responsibilities of Selected Partners

	7. Planning
	8. Proposal Questionnaire
	9. Evaluation & Selection
	10. Commercial & Legal Terms
	10.1 General
	10.2 Pricing & Payment
	10.3 Intellectual Property & Licensing
	10.4 Public Availability & Handover
	10.5 Limitation of Liability
	10.6 Funding Contingency & Withdrawal of RFP

	Appendices
	A. Project Background and Goals
	A.1 Context and Motivations
	A.2 Urgency
	A.3 General Architecture
	A.4 Key Use Cases

	B. Open-Source and Interoperability Testing
	B.1 Development of Open-Source Software
	B.2 Testing and Demonstrating Interoperability

	C. Implementation Scenarios
	C.1 Local HEMS
	C.2 Cloud-based HEMS

	D. Technical Considerations
	D.1 Modbus
	D.2 OCPP

	E. Technical Information
	E.1 Cross-Protocol Terminology Glossary

