Asynchronously updated predictions of electric
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Abstract—Electric vehicles are promising to mitigate the in-
creasing CO2 emissions from transport, provided that renew-
able energy sources generate the demanded electricity. The
stochasticity of renewable energy sources and charging demand
require intelligent charging schemes. Smart charging achieves
better performance when it is driven by reasonably accurate
predictions of charging behaviour. Hence, for a smart charging
scheme that dynamically updates a charging schedule, updating
the predictions of charging behaviour could be beneficial. In
this paper, we explore the potential to improve the accuracy of
prediction models of the connection duration to a charging station
by updating the predictions as the charging sessions unfold. We
compare a single-model with multiple-models for regularly and
irregularly spaced updates in time. The multiple-model with
irregular updates achieves the best performance while improving
the prediction accuracy up to 30 %, compared to conventional
approaches. It is efficient to update the predictions with higher
frequency in the very early stages of charging sessions. Later on,
regular updates are sufficient.

Index Terms—electric vehicles, smart charging, updated pre-
dictions, machine learning, data science

LIST OF SYMBOLS

e N - number of charging sessions,

e M - number of updates of a prediction,

e M - number of updates of a prediction of the k-th
session,

e x - vector of feature values associated with one observa-
tion,

e x; - vector of feature values associated with k-th obser-
vation (session),

o ti - time offset of the i-th prediction update since the
start of k-th session,

o t! - time offset of the first prediction,

e Yi - response variable (connection duration),

This work was supported in part by project VEGA 1/0077/22 - Innovative
prediction methods for optimisation of public service systems, in part by
VEGA 1/0216/21, “Design of emergency systems with conflicting criteria with
the tools of artificial intelligence”,in part by APVV-19-0441 - Allocation of
limited resources to public service systems with conflicting quality criteria, in
part by the Spanish Ministry of Economic Affairs and Digital Transformation
under the project IA4TES MIA.2021.M04.0008- Advanced intelligent tech-
nologies for a sustainable energy transition, in part by the Basque Government
under the ELKARTEK program, and in part by the Operational Program
Integrated Infrastructure 2014-2020 “Innovative Solutions for Propulsion,
Power, and Safety Components of Transport Vehicles” through the European
Regional Development Fund under grant ITMS313011V334.

4™ [ ubo§ Buzna
University of Zilina
Zilina, Slovakia
lubos.buzna@uniza.sk

3" Nazir Refa
FElaadNL
Arnhem, The Netherlands

« §i - estimate of the connection duration of k-th charging
session resulting from the prediction update made at the
time offset ti since the session start.

e § - length of the time interval between two prediction
updates,

e &% - length of the time interval between i-th and i + 1-th
connection duration prediction updates of the session £,

I. INTRODUCTION
A. Motivation

In the recent years, the humanity is looking more intensively
for options how to decrease anthropogenic COs emissions,
as they are correlated with global warming [/1]]. A promising
solution to decrease CO, emissions are electric vehicles (EVs),
when charged from renewable energy sources. The stochastic
nature of the EV charging demand and renewable energy
sources ask for a smart charging to coordinate the charging
process. Efficient smart charging requires estimates of the fu-
ture developments, e.g., predictions of the charging behaviour.
Several prediction approaches already exist in the literature.
However, often a single prediction is made at the arrival of an
EV to a charging station and it remains valid for the whole
duration of a charging session. For smart charging schemes
that dynamically update a charging schedule, it would be pos-
sible to update also predictions of charging behaviour. Hence,
there is potential to reach higher efficiency of dynamic smart
charging, if more accurate predictions of charging behaviour
can be achieved by updates.

B. Literature review

1) Prediction models of charging behaviour: Among the
most popular problems in the EV field are the forecasts of ag-
gregated demand [2]]. However, some smart charging schemes
require forecasts of individual charging behaviour. The lit-
erature proposing prediction models of individual charging
behaviour arose together with the availability of open datasets.
In [3[], [4] authors proposed a methodology to predict the
energy consumption and connection duration. In [5] authors
predicted connections duration of EVs and evaluated them
in the context of smart charging schemes. Although these
approaches improve the accuracy compared to benchmark
models, they do not consider updating the predictions in time
as the charging unfolds.



2) Updates of predictions: Updated predictions are benefi-
cial in many situations, such as for example duration of system
outages [6] or incidents duration [7]. Many applications of
updated predictions can be found in transport. Methodologies
based on Bayesian network were proposed to update predic-
tions of train delays [8]], [9]. In [10]], train delays predictions
are updated using timed event graph with dynamic arc weights.
In the context of individual charging behaviour we have not
identified any paper exploring updates of predictions.

II. DATA AND METHODS

A. EVnetNL dataset

For numerical experiments we use the EVnetNL dataset
maintained by the ElaadNL - knowledge and innovation centre
in the field of smart charging and the charging infrastruc-
ture [11]. The dataset comprises of two tables, “Transac-
tions” and “Meterreadings”. Each charging session in the
table “Transactions” is identified by charging point and con-
nector numbers, geographical coordinates, initial and termi-
nal timestamps, and the hashed number of the user RFID
cards used to initiate and terminate charging sessions. Table
“Meterreadings” documents the energy consumption by meter
readings made every 15 minutes. The subset of selected data
spans from 01/2016 to 07/2018. In this period the number of
charging stations was already stable [[12]. The dataset covers
1731 public and semi-public charging stations, about 65k EV
drivers, more than 900k charging sessions, and more than 30M
meter readings.
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Fig. 1. Histogram of the connection duration for charging sessions in the

EVnetNL dataset.

In the dataset, we found a small number of sessions with
exceedingly large connection duration, sometimes several days
or even weeks. Regarding smart charging, such long duration
is not of high relevance and for this reason the connection
duration is capped to 24 hours. The distribution of connection
duration is shown in Fig. [Tl The majority of connections take
less than five hours. Only a minority of sessions last more than
20 hours.

B. Feature engineering

To characterise a charging session, we designed a set of
features that can be organised in four groups: static features,
features describing long-term charging history, features de-
scribing short-term charging history and online features. Fea-
tures included in the first three groups capture developments
taking place prior to the start of the charging session upon
which the prediction is made and they were designed by
considering previous studies [3[], [5], [13]. The last group of
features captures the progress from the start of the charging
session until the time when the prediction is made.

1) Static features: These features take a constant value for
all sessions associated with a station or a user:

o first two letters of the station label encoding its type

(modelled as a categorical variable and one-hot encoded)
(7 features),

« longitude and latitude of the station (2 features),

o maximum charging power estimated as the minimum of
the user maximum power and station maximum power (1
feature).

2) Features describing long-term charging history: Fea-
tures to capture characteristics of charging sessions in a long-
term by aggregated statistics:

« mean, minimal and maximal values of the total charged
energy, connection duration and charge duration (all val-
ues are calculated for both, charging sessions previously
made by a user and charging sessions previously taking
place at a charging station) (3 x 3 x 2 features),

« relative frequency of sessions that lasted more than is the
current connection duration (the value is calculated for
both, for a user and for a charging station) (2 features).

3) Features describing short-term charging history: Fea-
tures calculated for n most recent days or n most recent
sessions, to capture the short-term charging history:

o the mean value of the charged energy, the mean value
of the connection duration and the count of sessions
considering last day (week) for each station (3 x 2
features),

« the mean values of the energy consumption and connec-
tion duration in the last 1, 5, 10 sessions for each user
(2 x 3 features).

4) Online updated features: Features that capture the

progress of the charging session since it has started:

« current hour of the day, weekday and month (modelled as
categorical variables and one-hot encoded) (43 features),

o total charged energy since the start of the session (1
feature),

e charged energy in the last 15, 30 and 60 minutes (3
features),

« connection duration since the beginning of the session (1
feature).

C. Prediction Methods

1) Naive models: Two naive prediction models are applied
to assess the performance of the proposed models:
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Fig. 2. A: Synchronously updated predictions. B: Asynchronously updated
predictions. We consider two parallel charging sessions initialised at the time
of EV arrival and terminating at the departure. Dashed lines indicate times
when the predictions are updated.

o Mean-static - the mean connections duration of charging
sessions associated with a given user,

¢ Mean-updated - the mean connection duration of all the
user’s sessions lasting more than the current duration of
the session upon which the prediction is made.

2) LightGBM: We use LightGBM [14] as the prediction
method which is a state of the art implementation of the
Gradient Boosted Regression Trees (GBRT) [15]. The Light-
GBM applies two novel techniques: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB)
speeding up the training process of conventional GBRT by up
to over 20 times while achieving almost the same accuracy.
For our purposes this is a large advantage as we need to train
large number of models.

D. Update strategies

To increase the overall model accuracy, we update the
predictions in discrete time steps [8]. There are two possible
approaches how to handle the prediction updates (see Fig. [2).
The synchronous approach updates all the sessions at the same
time, while the asynchronous approach handles each session
independently of other sessions. Obviously, synchronous ap-
proach is much more resource demanding as it requires a
global clock and the online features need to be adjusted to the
start time of sessions upon which the predictions are made. For
these reasons, we explore further the asynchronous approach.

We can combine the asynchronous approach with either
regular or irregular updates (see Fig. [). The irregular updates
can be used to minimise the overall prediction error when
appropriately adjusting the periods between updates. Further-
more, we can train one prediction model for all updates or one
prediction model for each update. Considering these options,
we compiled the following approaches:

o Static-model - the connection duration is predicted only
once at the time when the electric vehicle is plugged in,
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Fig. 3. A: A schematic illustrating the single-model approach with regular
update strategy. B: A schematic illustrating the multi-model approach with
irregular update strategy. For every charging session k and the time offsets t}'c
fori =1,.., My since the session start, the predictions §; are made using
the feature vector ;. The length of the period between i-th and 7 + 1-th
updates is either denoted as §j (irregular updates) or § (regular updates).

o Single-model - all prediction updates are made with the
same model (Fig. BA),

o Multi-model - for every prediction update a distinct model
is trained (Fig. 3B).

The LightGBM method was used for every approach.

E. Preparation of models

We divided the EVNetNL dataset into the warm-up set
(sessions from 2016), training set (sessions from 2017), vali-
dation set (the first 50k sessions from 2018) and test set (the
remaining sessions from 2018). The warm-up set comprises
the history that is required to calculate values of some features.
A validation set was allocated to avoid peeking, i.e. using
test-set performance to do both to choose a hypothesis and to
evaluate it [16]]. Thus, the validation set is used to evaluate
the values of hyperparameters.

To construct a multi-model with regular updates, each of
the models is trained on its own dataset, representing the
active sessions with target variable y; and updated features
x . To tune separately hyperparameters of each model would
be computationally very expensive, hence, we identified fit-
for-all values of hyperparameters on the validation set. The
most suitable values of update times for the irregular multi-
model are found as a part of hyperparameter optimisation. To
keep the computational burden within a reasonable limits, the
features describing long-term history are not updated through-
out the process. As a search strategy to find suitable values



of hyperparameters, we applied the Bayesian optimisation. To
decide which point to evaluate, the expected improvement is
estimated [[17]. We used the Tree-structured Parzen Estimator
Approach (TPE) 18] to model the conditional probability and
transform the configuration space to facilitate the expected
improvements.

F. Error measures

To take into account that each session can be updated
multiple times, we adjusted the standard prediction error
measures. We adapted the weighted mean absolute error [[19]]
by averaging the mean weighted absolute error over all updates
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where y;, is the connection duration of the charging session k
in the test data, ;. is the i-th update of the connection duration
prediction produced at time ¢, N is the number of all charging
sessions in the test set, M}, is the number of updates and 5,’;
is the period between i-th and ¢ + 1-th updates. For regular
updates the length of all periods is the same and we denote
it as §. When evaluating the models, predictions are made for
all t; which precede the end time of the k charging session.
The last d}, is selected to share the end point with the the end
time of the k charging session.

We evaluate the accuracy of predictions for the time offsets
since the sessions start t?, for i = 1,..., M by
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In Eq. ] only active sessions are considered. By definition,
t! is set to value of 0. Thus, the quantity M AE, evaluates
the accuracy of predictions at the time of EV arrival to the
charging station.

IIT. RESULTS

A. Regular updates

TABLE I
COMPARISON OF NAIVE (MEAN-STATIC, MEAN-UPDATED) AND
ADVANCED (STATIC-MODEL, SINGLE-MODEL, MULTI-MODEL)
PREDICTION MODELS.

Methods MAEg [hours] wWMAE [hours]
Mean-static 2.814 2.814
Mean-updated (6 = 1) 2.814 2.346
Static-model 2.227 2.227
Single-model (6 = 1) 2.302 1.798
Multi-model (§ = 1) 2.227 1.698

Table |I| compares the performance of naive models with
advanced models updating predictions regularly every hour
(0 = 1). The results confirm the superiority of advanced
models. The advantage of updating the predictions is already
evident from comparing the Mean-static and Mean-updated
models. On average, the error drops by almost 0.5 hour due

to updated predictions. Similarly, when contrasting the Static-
model with Single-model and Multi-model the improvement is
also about 0.5 hour. Interestingly, when considering only the
value of M AEy, the Static-model outperforms Single-Model.
In Table [l we study the role of the frequency of updates.

TABLE II
IMPACT OF THE FREQUENCY OF UPDATES ON THE ACCURACY OF
PREDICTIONS.
wMAE wMAE  wMAE wMAE

Models (6=2 (G=1) (=05 (6§=0.25
Mean-updated ~ 2.337 2.346 2.366 2.383
Single-models  1.806 1.798 1.794 1.793
Multi-model 1.723 1.698 1.685 1.677

As expected, the higher frequency increases the accuracy of
predictions. However, the improvements are relatively minor,
suggesting that a few updates are sufficient. It should also be
noted that the higher frequency requires more models and data
and thus demands more computational and communication
resources. Fig. |4 compares the prediction accuracy of models
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Fig. 4. Accuracy, expressed by M AE,;, as a function of the prediction time
offset ¢*. In all models, we used regular updates with 6 = 1. Horizontal lines
indicate the value of WMAE for each method.

as a function of the time offset ¢' since the begging of charging
sessions. Due to how we processed the data, the maximum
connection duration is 24 hours. Therefore, prediction errors
significantly decrease when the time offset exceeds 16 hours.
Again, as expected, the naive model (Mean-updated) dis-
plays significantly worse performance than advanced models
(Single-model and Mutli-model). However, the overall pattern
is similar. Initially, the prediction error grows and reaches the
maximum value around t* = 2 hours. As it can be seen in
Fig.|l} a vast majority of sessions are shorter than four hours.
Hence, for small values of ' a large number of sessions
contribute to the error. When short sessions terminate, the
error decreases and it starts to grow again from ¢’ = 8 hours.
For larger values of t*, the difference in performance between
the Single-model and Mutli-model disappears, indicating that
Single-model could be sufficient.
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Fig. 5. Accuracy of the Mu]t_i—model, expressed by M AFE,;, as a function
of the prediction time offset ¢*. Updates are made every hour (6 = 1). Only
sessions lasting more than 1, 2, 6 and 10 hours are visualised.

In Fig. ff] we observed an increase of the prediction error for
small and intermediate values of ¢*. We divided the sessions
into overlapping subsets based on their duration to analyse the
prediction error. In Fig. [5] we analysed the values of MAE,:
separately for sessions taking longer than 1, 2, 6 and 10 hours.
On average, shorter sessions reach lower MAE,: values. The
error mostly decreases with the time offset t*. The decrease
in MAE,: becomes smaller when the time offset ¢ is larger.
It is caused by sessions with longer duration that are harder
to predict. Only such sessions are left when the time offset ¢’
is larger.

B. Irregular updates

TABLE III
COMPARISON OF REGULAR AND IRREGULAR UPDATES FOR VARIOUS
NUMBERS OF USED PREDICTION MODELS M.

Regular Irregular

Multi-model  Multi-model
wMAE (M=4) 1.858 1.753
wMAE (M=6) 1.786 1.672
wMAE (M=8) 1.752 1.685
wMAE (M=12) 1.723 1.667

Table [[1I| compares the performance of regular and irregular
updates when using the Multi-model. With the same num-
ber of models, irregular updates achieve higher accuracy of
predictions. As expected, the marginal accuracy improvement
vanishes by growing the number of models. By comparing the
results with Table |lI, we observe that the regular Multi-model
with 96 models (6 = 0.25) gives a similar level of accuracy as
irregular Multi-model just with M = 6 models. The obtained
time offsets ¢* for the irregular Multi-models from Table
are presented in Fig. [§] The frequency of prediction updates
is higher for the early stages of charging sessions. Later on,
the updates are approximately uniformly distributed.
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Fig. 6. The most favourable time offsets ¢’ at each prediction update as
identified for Multi-model by the used search strategy. We considered M = 4,
6, 8 and 12 irregular updates.

C. Comparison of models

Table sums up how the models utilise the update
strategies and pros and cons of each model.

TABLE IV
COMPARISON OF THE MODELS.

Model
Static-model

Pros and cons

The prediction remains un-
changed for the whole duration
of a charging session.
Single-model improves the ac-
curacy compared to the static-
model. The initial prediction at
the time of EV’s arrival is less
accurate.
Multi-model

Update strategy
Prediction at the time
of EV’s arrival.

An individual model
predicts  connection
duration for each
time offset.

Single-model

Multi-model
regular

eliminates the
single-model drawback and
improves the accuracy of
predictions at the time of EV’s

For every time off-
set a different model
is used. Time offsets
are regularly spaced

in time. arrival and also improves the
overall accuracy.
Multi-model For every updating Irregular approach finds the

irregular

time offset a distinct
model is used. Time
offsets are irregularly
spaced in time.

most suitable time offsets. As
a result, irregular multi-model
reaches similar prediction ac-
curacy than multi-model with

regular time offsets with sig-
nificantly lower number of
models.

IV. CONCLUSIONS

We explored how the updates of the connection duration
predictions can improve the accuracy. We prepared two naive
and three advanced prediction models. From the comparison of
their performance, we derived the following main conclusions:

o Regular updates significantly improve the accuracy of
predictions.

o The accuracy of predictions varies when they are done
with a different time offset since the beginning of the



charging session. This seems to be linked to the way
how the properties of charging sessions change with their
duration.

Irregular updates further improve the accuracy of predic-
tions. Higher frequency of prediction updates is beneficial
in the early stages of charging sessions. Later on, approx-
imately uniformly distributed updates are sufficient.

A. Limitations and future outlooks

The presented research suffers from several limitations that
we will address in future research:

[1]

[3]

[4]

[5]

[7]
[8]

[10]

(11]
[12]

[13]

We used only a single method. By utilising some other
methods, e.g., neural networks, some further improve-
ments could be achieved.

We used only a single dataset. This dataset covers
charging behaviour of EV-drivers at public slow charging
locations. For DC fast chargers, home or workplace
chargers the results might differ.

The prediction updates should also be investigated with
other characteristics of charging sessions than the con-
nection duration.

The performance of prediction updates was evaluated by
accuracy measures. It could be interesting to evaluate the
benefits of updated predictions in the context of smart
charging schemes.
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